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Obtaining Dynamic Scheduling Policies with Simulation and
Machine Learning

Danilo Carastan-Santos Raphael Y. de Camargo

- Simulations to generate examples (features, label)
- Training of non-linear regression
- Trained and tested on synthetic and real datasets

Nominated for Best Paper (SC'17)
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One can only gain by replacing EASY Backfilling: A
simple scheduling policies case study

Danilo Carastan-Santos, Raphael y de Camargo, Denis Trystram, Salah Zrigui

Best-Paper Award (CCGrid)

SAF is difficult to beat
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Name | Description Function
FCFS | First-Come-First-Served [27] &) =7
SPF Smallest Estimated Processing Time First [28] | f(t) = p:
SQF Smallest Resource Requirement First f(t) =qt
SAF Smallest Estimated “Area” First f(t) =pt - qt
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Can We Train an Agent to Perform Scheduling?

Reinforcement Learning

Must make decisions quickly (worth only for larger tasks)

- State: Fan, Y., et al., DRAS: Deep
- queue: waiting time, resource requirements, Reinforcement Learning for Cluster
Scheduling in High Performance
workflow graph Computing, IEEE Transactions on
- machine: active processes, idle resources Parallel and Distributed Systems,

. vol 3, no 12, 2022.
Actions: Acton: Ready, Reserved, Backfiled Jobs

- next job to execute, e
which policy to use “
Reward: RiVES fowk
- Minimize execution time,
waiting time, energy
consumption

Job & System State

Ready & Reserved jobs

Reward: Scheduling Objective

Level-2 Neural Network ]



https://doi.org/10.1109/TPDS.2022.3205325

Can We Train an Agent to Perform Scheduling?

Train the algorithm using simulation

- Q-function: map state and action
to reward

- Policy function: map state into
action

Pre-train Q-function and/or policy function

- Using good scheduling functions (e.g., SAF)
- Fine-tuning using RL

fit Q™, V™, or A™

fit a model to
ﬁ estimate return

generate

samples (i.e.
run the policy)
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Reinforcement Learning for Last Mile Problem

Use of Demand Responsive Transit (DRT)

- Take passengers to and from Hubs
- Microtransit with 8 to 16 seats

Reinforcement Learning

Public transport

- DecideonwhichdirectiontogofromHub | _“amee S
- Outbound trip: take passenger going R V! s
toward target site '_Qf/s R
. . A ; X
- Inbound trip: take passenger going
Rick Grahn, Sean Qian, Chris Hendrickson
towa rdS the hU b Optimizing first- and last-mile public transit

services leveraging transportation network
companies (TNC) Transportation. 2023



